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Abstract

Hebbian learning is a biological principle that intuitively describes how neurons
adapt connections through repeated stimuli. However, when applied to machine
learning, it suffers serious issues due to the unconstrained updates of the connection
and lack of account for feedback mediation. Such shortcomings limit its effective
scaling to complex network architectures and tasks. To this end, here we introduce
the Structural Projection Hebbian Representation (SPHeRe), a novel unsupervised
learning method that integrates orthogonality and structural information preserva-
tion through a local auxiliary nonlinear block. The loss for structural information
preservation backpropagates to the input through an auxiliary lightweight pro-
jection that conceptually serves as feedback mediation while the orthogonality
constraints account for the boundedness of updating magnitude. Extensive experi-
mental results show that SPHeRe achieves SOTA performance among unsupervised
synaptic plasticity approaches on standard image classification benchmarks, includ-
ing CIFAR-10, CIFAR-100, and Tiny-ImageNet. Furthermore, the method exhibits
strong effectiveness in continual learning and transfer learning scenarios, and im-
age reconstruction tasks show the robustness and generalizability of the extracted
features. This work demonstrates the competitiveness and potential of Hebbian un-
supervised learning rules within modern deep learning frameworks, demonstrating
the possibility of efficient and biologically plausible learning algorithms without
the strong dependence on strict backpropagation.

1 Introduction

In recent years, deep learning based on error backpropagation has achieved revolutionary devel-
opments in the field of artificial intelligence [1, 2]. However, the biological plausibility of back-
propagation remains a subject of debate, particularly concerning its requirement for symmetric
feedback connections and precise global error signal transmission, mechanisms not readily observed
in biological neural circuits [3, 4]. At the same time, some neuroanatomical studies have found that
the plasticity regulation of cortical synapses mainly follows local rules, with the strength changes
dynamically dominated by the activities of pre-/postsynaptic neurons, occasionally under the syner-
gistic regulation of higher-order signals such as neuromodulators. Based on these neuroanatomical
studies, researchers have proposed various biologically inspired learning algorithms to replace the
backpropagation algorithm. The Hebbian rule, as a canonical algorithm of this type, was first pro-
posed by Donald Hebb in 1949 [5]. Its core idea is that "neurons that fire together wire together,"
which means that learning and memory formation are achieved through the cooperative strengthening
of synapses. As it does not rely on global signals, it belongs to unsupervised learning.
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In order to overcome the limitations of the original Hebbian rules in terms of stability, competitiveness,
and feature extraction capabilities, researchers have developed various important variants based on
them, such as threshold mechanisms, Bienenstock-Cooper-Munro (BCM) rules [6], and Oja’s rules
[7]. In recent years, with the development of deep learning and brain-like science, Hebbian learning
has also shown new vitality. In particular, research that combined the Oja’s rule with mechanisms
such as the Winner-Take-All (WTA) rule [8] has, for the first time, exceeded the test accuracy of 80%
in the CIFAR-10 dataset [9], demonstrating the potential of Hebbian-like rules in handling complex
pattern recognition problems. However, despite these advances, the development of Hebbian rules
and their variants still faces challenges. Compared to the well-established theoretical framework
and optimization techniques for backpropagation, many Hebbian-based approaches still lack clear
optimization objectives compatible with standard deep learning training paradigms. This hinders
researchers from optimizing it and extending it to deeper and more complex network structures.

In this paper, we propose a more stable hebbian loss function called SPHeRe that directly encourages
the preservation of sample relationship structures between the input and output. Crucially, we
provide theoretical proof, demonstrating that minimizing this simplified loss corresponds to finding
an optimal low-dimensional projection of the input data (Lemma 4.2.1), akin to principal subspace
analysis (PCA). Then, we use a lightweight auxiliary projection module (ϕ) that enables efficient
application to deep networks by computing the structural loss in a low-dimensional projection (Z)
while allowing the main block (f ) to learn richer intermediate representations (Y ′). Meanwhile, we
use orthogonal constraint loss (Lorth) on Z to encourage Z to learn richer features. Our experimental
results demonstrate that SPHeRe achieves SOTA performance among unsupervised, biologically
plausible learning methods on the CIFAR-10, CIFAR-100 [10] and Tiny-ImageNet [11] benchmarks.
Furthermore, SPHeRe exhibits strong capabilities in continual learning and transfer learning scenarios,
suggesting that it learns robust and generalizable representations. The following summarizes our
main contributions:

• We propose the SPHeRe method, which minimizes the discrepancy in sample relationship
structures (such as Gram matrices or kernel matrices) between input and output representa-
tions, and optionally combines orthogonality constraints (Lorth) to improve feature quality.
The introduction of a lightweight non-linear auxiliary module (ϕ) allows this method to be
efficiently applied to deep networks, promoting effective unsupervised feature extraction.

• We provide a theoretical analysis (Lemma 4.2.1 and Appendix B) showing that optimiz-
ing the core loss LSPHeRe is equivalent to finding the optimal low-dimensional projection
(principal subspace) of the input data. Through experiments on reconstruction and transfer
learning, we further verify that SPHeRe can extract robust and generalizable image features.

• Through extensive experiments on multiple image benchmark datasets (CIFAR-10/100,
Tiny-ImageNet), we demonstrate that SPHeRe achieves SOTA performance in biologically
inspired unsupervised learning methods. Furthermore, the experimental results also indicate
that this method is equally effective in challenging scenarios such as continual learning and
transfer learning.

2 Related Work

Synaptic Plasticity Rules. Synaptic plasticity, the modulation of connection strength between
neurons, is recognized as a fundamental biological substrate for learning, memory consolidation,
and behavioral shaping [12]. The classical Hebbian principle, which posits that correlated activity
strengthens synapses [5], laid the foundation for understanding activity-dependent modifications.
But neuroscience experiments reveal that the rules of synaptic plasticity in the brain are much more
complex, such as the timing-dependent effects of STDP [13], network-wide balancing through
homeostatic plasticity [14], influences between synapses through heterosynaptic plasticity [15], and
even the control of plasticity itself, termed metaplasticity [16]. Recognizing the power of these
biological adaptation strategies, researchers are increasingly working to integrate similar neuroplastic
concepts into neural networks. Notable examples include investigations into the functional impact of
homeostatic regulation in artificial systems [14], the synergistic use of Hebbian and non-Hebbian
rules within recurrent architectures [17], and the development of unsupervised learning paradigms
based on complementary Hebbian and anti-Hebbian updates [9], demonstrating a growing trend
towards biologically plausible learning mechanisms in modern artificial intelligent.

2



Unsupervised learning. Unsupervised learning (UL) aims to learn data representations from
unlabeled data. Classical methods such as K-means [18] and Principal Component Analysis (PCA)
[19] exploit the statistical structure of the data to perform dimensionality reduction or clustering.
In the context of image classification, recent advances in UL for neural networks are typically
categorized into two main approaches: self-supervised learning (SSL) and the reconstruction method
[20]. SSL methods, including contrastive learning approaches such as SimCLR [21], BYOL [22],
and SimSiam [23], rely on pretext tasks and often employ pseudo-labels. The reconstruction method,
on the other hand, trains the encoder and decoder simultaneously through image reconstruction loss
to train the encoder to extract low-dimensional representations of the images, and the decoder can
reconstruct the images from the low-dimensional representations. The autoencoder [24], VAE [25],
and MAE [26] are representative of this type of method. However, the inherent limitations of these
mainstream SSL and reconstruction methods are that they fundamentally rely on end-to-end gradient
computation through backpropagation, a process that lacks biological plausibility. In this paper, we
attempt to establish a biologically plausible new path for unsupervised learning.

3 Preliminaries

3.1 Hebbian Rule

The Hebbian learning rule satisfies the locality property, where the synaptic connection is determined
solely by the spike states of its pre- and post-synaptic neurons, without the influence of other neurons.
In the classical Hebbian rule, the equation is ∆wij = η · vivj , representing the product of the firing
rates of the pre- and post-synaptic neurons. Then consider a simple linear matrix multiplication
process, we use X ∈ RB×N to represent the input vector, Y ∈ RB×M to represent the output vector,
W ∈ RN×M to represent the synaptic weights, and the relationship between them is: Y = X ·W .
So, the original Hebbian rule for W is:

∆W = η · (X⊤Y ), (1)

3.2 Oja’s rule

The classical Hebbian rule has certain deficiencies, such as the potential for overtraining and instability
due to consistently positive firing rates. The Oja’s rule is a well-known variant of the Hebbian rule,
incorporating an additional decay term in its formula; the greater the post-synaptic activity, the more
significant the decay. Under Oja’s rule, the weight update equation is ∆wij = η(vi − wijvj)vj . And
the Oja’s rule formula for W can be expressed as follows:

∆W = η(X⊤ · Y −W · Y ⊤ · Y ). (2)

To some extent, Oja’s rule approximates principal component analysis (PCA) for dimensionality
reduction and has the effect of extracting features. However, the current Oja’s rule does not consider
the complex nonlinear transformations and feature quantity adjustments in deep learning, making it
difficult to directly apply to multilayer networks.

4 Methodology

This section introduces the Structural Projection Hebbian Representation (SPHeRe) method, an
unsupervised learning approach inspired by Hebbian principles but adapted for modern deep learning
architectures. SPHeRe aims to learn meaningful representations by preserving the structural rela-
tionships within the input data, utilizing a specific loss function, an orthogonality constraint, and a
lightweight auxiliary block.

4.1 Analyze Hebbian rules from the perspective of loss functions

In this section, we will analyze how the Hebbian rule can extract information from the perspective
of the loss function. Since the Hebbian rule does not care for its activation function, we just start
from the simplest linear layer, where we use X ∈ RB×N to represent the input vector, Y ∈ RB×M

to represent the output vector, W ∈ RN×M to represent the synaptic weights, and the relationship
between them is: Y = X ·W .
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Original Hebbian rule. For the simple linear layer trained using the classical Hebbian rule, its
equivalent loss function is Lhebb = − 1

2 ||Y ||2F . Minimizing the loss Lhebb will increase the overall
magnitude of the output matrix Y , which means that the values of the elements in Y will increase.
This optimization might lead to a larger variance in the distribution of Y , making it easier to classify.
However, without constraints, this could result in excessively large output values, potentially causing
numerical instability. In contrast, the equivalent loss function of anti-hebbian is Lanti-hebb = 1

2 ||Y ||2F ,
and optimizing Lanti-hebb is equivalent to driving all elements of the output Y as close to zero as
possible. This is a form of L2 regularization for the output.

Oja’s rule. Oja’s rule improves upon the classical Hebbian rule by introducing a suppressive term
that prevents the weight matrix from growing indefinitely. The equivalent loss function of Oja’s rule
is:

Loja =
1

4
Tr

(
(Y Y ⊤ −XX⊤)(XX⊤)−1(Y Y ⊤ −XX⊤)

)
. (3)

In which Tr denotes the trace of a matrix. Optimizing this loss function is somewhat equivalent to
minimizing the Gram matrix (sample relationship matrix) KX = XX⊤ of the input X and the gram
matrix KY = Y Y ⊤ of the output Y . When M ≥ N , the weight W tends to WW⊤ ≈ IN ; when
M < N , the output Y becomes a representation of X , which will mimic the geometric structure of
X in the N-dimensional space as much as possible in the M-dimensional space, thus preserving the
pairwise relationships between samples as much as possible. In the loss function, (XX⊤)−1 acts
as a weighting mechanism, weighting the errors according to the characteristics of the input data.
However, the existence of (XX⊤)−1 requires (XX⊤) to be invertible, and it may lead to numerical
instability.

4.2 Structural Projection Hebbian Representation (SPHeRe)

4.2.1 Preserving Data Structure

SPHeRe starts from the equivalent loss function of Oja’s rule. First, we simplify the loss function by
removing the inverse term (XX⊤)−1 and the constant term. This new objective directly seeks to learn
an output representation (Y ) that preserves the pairwise structural information inherent in the input,
as captured by their respective Gram matrices (XX⊤ and Y Y ⊤). While derived from a Hebbian
learning rule (Oja’s), this simplified loss also connects to dimensionality reduction techniques aiming
for optimal data projection. We thus define the core SPHeRe loss function as:

LSPHeRe = Tr
(
(Y Y ⊤ −XX⊤)(Y Y ⊤ −XX⊤)

)
=

∥∥Y Y ⊤ −XX⊤∥∥2
F
. (4)

From the above equation, it can be intuitively seen that the goal of simplifying the loss function is
to make the output Gram matrix approach the input Gram matrix. Some works use this method to
achieve multidimensional scaling (MDS) [27] or non-negative matrix factorization (NMF) [28]. The
theoretical justification for this loss in capturing essential data structure comes from its connection to
principal subspace projection, as formalized in the following lemma.
Lemma 4.1. Let X ∈ RB×N be the input data matrix and let Y = XW ∈ RB×M be the output,
W ∈ RN×M be the weight matrix, and M < N . Consider the loss function L = ∥Y Y ⊤ −XX⊤∥2F .
Minimizing L with respect to W yields an optimal output Y ∗ given by Y ∗ = XVM , where VM

consists of the first M right singular vectors of X . This Y ∗ represents the projection of the rows of
X onto the M -dimensional principal subspace, and Y ∗Y ∗⊤ is the best rank-M approximation of
XX⊤ in the Frobenius norm.

The relevant proof is provided in Appendix A. From the lemma 4.2.1, it can be concluded that the
objective of the new equivalent loss function is to find the optimal projection of the low-dimensional
space of the input X , and the minimum value of the equivalent loss function is

∑N
i=M+1 σ

4
i , where

σi is the i-th largest singular value of the input X . In addition, when the relationship between Y and
X is nonlinear, such as Y = f(X), where f is a nonlinear neural network (universal approximator).
Due to the powerful fit ability of f , minimizing the loss function L will still lead Y to approach the
optimal solution Y ∗ = XVM to minimize L.

After obtaining the equivalent loss function, we can find the derivative of W as: ∇W = 4X⊤(Y Y ⊤−
XX⊤)Y . The outer term X⊤(·)Y still reflects the fundamental Hebbian rule: the change in
weights is related to the correlation between pre-synaptic activity (X) and post-synaptic activity
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(Y ). (Y Y ⊤ −XX⊤) is the weight term of the fundamental Hebbian rule. It wants to transform the
statistical structure of the input space (XX⊤) into the statistical structure of the output space (Y Y ⊤)
and adjust the Hebbian rule through the higher-order relationships between the sample pairs in the
input and output.

4.2.2 Enhancing Features: Orthogonality constraint

To enhance the quality and interpretability of the extracted features, we introduce an additional
Orthogonality constraint term, called orthogonal loss. This loss encourages the different features
represented by the columns of the output matrix Y to be mutually orthogonal. Decorrelated or
orthogonal features often lead to less redundant representations and can improve the effectiveness of
downstream tasks. The Orthogonal Loss function is defined as:

Lorth =
∥∥Y ⊤Y − IM

∥∥2
F
. (5)

The matrix Y ⊤Y ∈ RM×M computes the product of dots between all pairs of columns (features) of
Y . So, minimizing Lorth pushes the columns of Y towards orthogonality. By promoting orthogonality
among the features, we aim to reduce redundancy in the learned representation, ensuring that
each feature captures distinct aspects of the input data. Under orthogonal loss, the gradient of W
is:∇W = X⊤Y (Y ⊤Y − IM ). Interestingly, the gradient associated with this loss also exhibits a
Hebbian modulation structure, which adds a weight term Y ⊤Y − IM to the standard Hebbian rule
and drives the output features of Y to be as orthogonal as possible.

As a result, the total loss combines the new hebbian loss and the orthogonality loss and can be
described as:

LTotal = LSPHeRe + λLorth, (6)
where λ is a hyperparameter that balances the contribution of the orthogonality constraint against the
low-rank projection.

4.2.3 Integrating SPHeRe into Neural Networks: The Auxiliary block

The simplified Hebbian loss function LSPHeRe and the orthogonal loss Lorth presented earlier are
defined based on a linear transformation Y = XW . However, deep learning heavily relies on
non-linear layers to capture complex data patterns. Directly applying linear Hebbian loss to train
deep neural networks is often insufficient. Therefore, we extend our Hebbian method to non-linear
settings.

Linear to nonlinear. we replace the linear transformation with a nonlinear mapping represented by
a neural network. Let Y ′ = f(X,W ) denote the output of a neural network layer (or block) f with
parameters W , given the input X . According to Lemma 4.2.1, minimizing the simplified Hebbian
loss LSPHeRe drives the output Y towards the optimal low-dimensional projection of the input X .
Meanwhile, the neural network f is a universal approximator, it has the capacity to learn complex
functions, including the optimal linear projection identified by Lemma 4.2.1 if that minimizes the
objective. Thus, even with a non-linear function f , optimizing the new Hebbian loss that compares
input and output statistical structures can guide f to learn meaningful representations. We provide
the corresponding verification experiments in Appendix B.

Auxiliary block. To further enhance flexibility and computational efficiency, we introduce an
additional lightweight non-linear projection layer ϕ with parameters θ. This layer takes the interme-
diate representation Y ′ as input and produces the auxiliary output Z = ϕ(Y ′, θ) = ϕ(f(X,W ), θ).
We provide a comparison between SPHeRe with the auxiliary block and other similar methods in
Appendix C. This two-stage non-linear mapping offers several advantages:

• Computational Efficiency. The dimension MZ of the auxiliary output Z can be chosen
to be small (e.g., MZ ≪ M ′), significantly reducing the cost of computing ZZ⊤ and the
LSPHeRe loss, making it practical for large batches and deep networks.

• Flexibility for Main Block (f ). The main block f can learn a potentially high-dimensional
(M ′) and complex intermediate representation Y ′ without being directly constrained by the
low-rank structure imposed by LSPHeRe. The auxiliary network ϕ handles the projection to
the low-dimensional space Z where the structural comparison occurs.

5



• Effective Nonlinear Learning. Even though f and ϕ are nonlinear, minimizing LSPHeRe
on Z still effectively guides the network. As indicated by Lemma 4.2.1, the target for Z is
the principal subspace projection XVMZ

. Since f and ϕ are universal approximators, they
possess the capacity to learn the complex mapping from X to an approximation of XVMZ

through Y ′ and Z during optimization. Experimental validation (detailed in Appendix B)
confirms this: using this non-linear auxiliary setup, the learned auxiliary features Z exhibit
high structural similarity (measured by Centered Kernel Alignment (CKA) and alignment
of Singular Value Decomposition (SVD) components) to features obtained from the ideal
linear projection defined by Lemma 4.2.1. This demonstrates that LSPHeRe effectively drives
the non-linear system to capture the principal structural information of the input via the
auxiliary branch.

• Locality. The objective of W is determined locally by comparing its input X to a repre-
sentation Z derived (via ϕ) from its output Y ′. Although gradients still flow through f
and ϕ during optimization, the objective itself is defined relative to the block’s input and
(projected) output structure, differing from end-to-end supervision from a final task loss.

4.3 Distinguishing SPHeRe from PCA and Oja’s Rule

While inspired by principles related to Oja’s rule and PCA , SPHeRe differs significantly as a practical
deep learning method: (1) Nonlinear: SPHeRe is explicitly designed for training deep, nonlinear
neural networks layer-by-layer or block-by-block, whereas standard PCA is a linear technique
and Oja’s rule is typically analyzed in linear or simple non-linear settings; (2) Auxiliary block:
The use of the auxiliary block ϕ is a core architectural innovation of SPHeRe. It decouples the
dimensionality required for efficient structural comparison (MZ) from the dimensionality of the
main block feature representation (M ′), allowing flexibility and scalability not present in direct
PCA/Oja implementations; (3) Motivation The primary goal is unsupervised pre-training or layer-
wise training of deep networks to learn features beneficial for downstream tasks (like classification,
transfer learning), rather than solely dimensionality reduction as in standard PCA. We provide a
comparison of SPHeRe with more unsupervised dimensionality reduction methods in Appendix C.

4.4 Overall Method

The core idea of SPHeRe is to leverage an auxiliary lightweight nonlinear projection ϕ to compute a
low-dimensional representation Z, whose relationship structure (captured by a kernel matrix KZ)
is driven to match the relationship structure of the input X (captured by KX ). This is achieved
by minimizing the simplified Hebbian loss LSPHeRe defined on these kernel matrices. Then, an
orthogonality constraint Lorth can be applied to the output Y ′ of the main block f to encourage the
decorrelation of the features. The auxiliary branch allows the main block f to operate with potentially
higher-dimensional intermediate features Y ′ while keeping the Hebbian loss computation efficient
via the low-dimensional Z. The process can be summarized by the following equations and Fig. 1:

Y = f(X,W ), Z = ϕ(Y, θ)

X̂ = X/∥X∥2, Ẑ = Z/∥Z∥2
(KX) = XX⊤, (KZ) = ZZ⊤

LSPHeRe = ∥KZ −KX∥2F , Lorth = ∥Z⊤Z − I∥2F
LTotal = LSPHeRe + λLorth

X

Layer i

σ

Layer i+1

Φ

κκ Hebbian
Loss

Y

Z Forward
Backward
Detach
Gradient

Figure 1: The concept of SPHeRe.

5 Experiments

5.1 Experimental Setup

Our Hebbian network architecture consists of three Hebbian-trained convolutional layers (384, 768,
1536 channels) with kernel size 3 and a fully connected output layer trained with backpropagation.
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Each convolutional layer is followed by a max-pooling layer to reduce the image resolution by half.
A skip connection is employed in the final layer, in which an Avgpool(2,2) is used to downsample,
but gradients are not propagated backward through it. If not specifically stated, we use Leaky-ReLU
as the activation function. A lightweight auxiliary network, ϕ, is introduced for the downsampling of
convolutional features. Let the input feature map of ϕ have k channels. The network ϕ comprises
three sequential stages: (i) a 1× 1 convolution halving the channel dimension to k/2; (ii) an Adaptive
Pooling operation collapsing the spatial dimensions to 1× 1; (iii) a fully connected layer projecting
the intermediate k/2-dimensional features onto a final 256-dimensional representation. We trained
the network using AdamW (learning rate: 0.001, weight decay: 0.05) with a batch size of 128 and a
learning rate scheduler; the hyperparameter λ for Lorth is set to 0.8; no data augmentation was applied
except for standard normalization. For fair comparison, the SoftHebb baseline adopted the same
network structure but otherwise retained its standard optimal hyperparameters.

5.2 Comparison to Existing Works

In this section, we compare our method with other existing unsupervised synaptic plasticity learning
methods on the CIFAR-10, CIFAR-100 and Tiny-ImageNet datasets. For the SoftHebb method,
we use open source code and verify it in our network architecture. It is possible that SoftHebb is
sensitive to network structure, which has led to a little decrease in network performance than reported
in the paper after using our structure. As shown in Table 1, our method consistently outperforms
these existing methods on all three benchmark datasets. On CIFAR-10, our method achieves the test
accuracy of 81.11%, exceeding the best previous result (80.3%). This advantage is maintained on
CIFAR-100 (0.79% higher than SoftHebb) and becomes even more pronounced on the more complex
Tiny-ImageNet dataset, where our method achieves 40.33% compared to 34.12% for SoftHebb.

Table 1: Compare with existing synaptic plasticity works. * denotes results reported on the source
paper. † denotes self-implemented result on our network structure with open source code. All
accuracy values are presented in the format mean ± standard deviation.

Approaches CIFAR-10 CIFAR-100 Tiny-ImageNet

D-CSNN [29] 73.7 45.17 14.36
Hard WTA [30] 72.2 32.56 –
Hard WTA [8] 74.6 – –
SoftHebb [9]* 80.3 56.0 –
SoftHebb [9]† 78.86 54.18 34.12
SPHeRe 81.11 ± 0.11 56.79 ± 0.69 40.33 ± 0.24

5.3 Analysis Experiments

In this section, we conduct a series of analysis experiments to evaluate different aspects of our
proposed method. Due to space limitations in the main text, we present a selection of key results here.
For a more comprehensive evaluation and additional analysis experiments, we refer the reader to
Appendix B,D,E,F,G,H, which provides more analysis experiments and results.

5.3.1 Ablation Study

In this section, we conduct an ablation study on different components of our method to verify their
effectiveness to the final performance. Specifically, we decompose our method into the original Oja’s
Hebbian loss Loja, the simplified Oja’s Hebbian loss LSPHeRe, the orthogonality constraint loss of
features Lorth, and the auxiliary block ϕ. Then, we verify the unsupervised classification performance
on CIFAR-10 with different combinations. The results are summarized in Table 2. Using only
Loja can achieve an accuracy of 73.8%, indicating that the original Oja’s rule is still effective. It is
worth noting that ablation experiments show that both the orthogonality constraint loss Lorth and the
auxiliary block ϕ can effectively improve the algorithm’s performance. However, Lorth requires a
significant amount of computation, leading to memory overflow when dimension reduction is not
performed using ϕ. Although LSPHeRe does not perform as well as the original Loja, its combination
with other components (Lorth and ϕ) is superior to the original Oja loss Loja. Ultimately, with the
combination of LSPHeRe, Lorth, and ϕ, the network achieved 81.18% accuracy on the test set.
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Table 2: Accuracy comparison for different loss
function combinations

LOja LSPHeRe Lorth ϕ Accuracy (%)
✓ 73.8
✓ ✓ 76.2
✓ ✓ ✓ 76.3

✓ 65.4
✓ ✓ 78.9

✓ ✓ 80.7
✓ ✓ ✓ 81.18

Table 3: Continual Learning results. * denotes
self-implemented. All accuracy values are pre-
sented in the format mean ± standard deviation.

Approaches Split-CIFAR100 Split-TinyImageNet

EWC [31] 71.96± 0.37 62.87± 0.31
HAT [32] 75.70± 0.50 54.97± 0.84
OWM [33] 70.89± 0.13 –
GPM [34] 74.99 ± 0.12 66.00 ± 0.24
SoftHebb [9]* 51.1 –
SPHeRe 72.72± 1.14 63.46± 0.79
SPHeRe-EWC 76.53± 0.64 67.05± 1.16

5.3.2 Performance on Continual Learning

Continual learning (CL) is a significant challenge in machine learning, which requires the net-
work to learn new knowledge sequentially without suffering catastrophic forgetting of previously
acquired knowledge. We evaluated our proposed method, SPHeRe, on standard CL benchmarks,
Split-CIFAR100 and Split-TinyImageNet, with the results presented in Table 3. Our approach
achieves competitive performance, demonstrating its potential in the CL setting. The reason for
this phenomenon may be that our unsupervised learning method pays more attention to the general
representations of input images, so it is more robust to distribution changes encountered between
tasks, thus mitigating the phenomenon of knowledge forgetting. Furthermore, when combined
with a well-established CL technique (EWC), the SPHeRe-EWC method significantly improves
performance, achieving state-of-the-art results on both datasets.

5.4 Performance on Transfer Learning

Since our method belongs to unsupervised learning, it can capture some general representations
of the underlying data of images, which may be applicable to different target tasks or datasets. In
this section, we conduct cross-dataset transfer learning experiments, training the three convolutional
layers on one dataset (source) through SPHeRe and only training the classification head on another
dataset (target) to evaluate network performance. The results, detailed in Table 4, show promising
transferability. When transferring knowledge from Tiny-ImageNet to CIFAR-10, the model achieved
a test accuracy of 80.03%, which is remarkably close to the 81.11% accuracy obtained when training
SPHeRe directly on CIFAR-10 (a performance gap of only -1.08%). Similarly, transferring from
CIFAR-10 to Tiny-ImageNet yielded a test accuracy of 37.7%, compared to the 40.33% baseline
achieved with direct training on Tiny-ImageNet (a gap of -2.63%). Although there is a slight decrease
in performance compared to training directly on the target dataset, these results indicate that the
feature extraction rules learned by SPHeRe on the source dataset remain effective when applied to
different target datasets, confirming the method’s effective transfer learning capability.

Table 4: Cross-Dataset transfer learning performance of SPHeRe
Transfer Direction Transfer Learning (%) Non-Transfer (%) Gap

(Train/Test) (SPHeRe alone) (vs. Non-Transfer)

Tiny-ImageNet → CIFAR-10 97.3 / 80.03 81.11 −1.08%
CIFAR-10 → Tiny-ImageNet 99.9 / 37.7 40.33 −2.63%

5.4.1 Reconstruction Experiments

In continuous learning and transfer learning experiments, SPHeRe achieved good experimental
results, indicating that SPHeRe tends to extract more general information from images. To verify this
statement, we designed an experiment to prove whether the image information extracted by SPHeRe
can better compress the complete information of the image. We first pretrained both the baseline
model and our SPHeRe model on the CIFAR-10 dataset. These pretrained models were then used as
encoders to transform input images into feature maps. These images could be added with Gaussian
noise. Next, we send the feature maps into a decoder, which was trained via backpropagation to
reconstruct the original images. More details on the structure, training settings, and more results
can be found in the Appendix D. Reconstruction loss (pixel-wise mean square error), calculated
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as the difference between the original and decoded images, served as our evaluation metric. As
shown in Fig. 2, for reconstructing original clean images, the decoder utilizing features from our
SPHeRe encoder achieved a remarkably low loss of 3.37×10−3. This outperforms the reconstruction
based on features of other methods. At the same time, visually, our method provides the best image
restoration, indicating that our method can better compress and retain the complete image information.
Furthermore, even under these noisy conditions, the decoder using SPHeRe features maintained
an outstanding reconstruction performance, achieving an MSE of just 3.59 × 10−3, effectively
reconstructing the original clean image from the noisy input’s features. Additionally, we notice that
the SoftHebb method tends to discard the color information of the image. This may lead to decreased
performance in tasks where color information is crucial. These reconstruction results strongly support
our hypothesis that SPHeRe’s unsupervised Hebbian learning mechanism captures more fundamental,
complete, and robust visual information compared to both standard backpropagation and the SoftHebb
baseline.
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Figure 2: A sample of reconstruction results. The loss values are scaled by a factor of 103.

6 Conclusion

This work revisits Hebbian learning’s connection to optimal low-dimensional projection via equivalent
loss functions. We introduce SPHeRe, a novel unsupervised loss function derived by simplifying the
equivalent loss of Oja’s rule, designed to minimize structural differences between input and output
representations. To enhance feature extraction, SPHeRe incorporates lightweight nonlinear modules
and a feature orthogonality constraint. SPHeRe achieves state-of-the-art results among unsupervised
plasticity methods on multiple classification datasets and demonstrates robustness and generalizability
across continual learning, transfer learning, and image reconstruction tasks. Our findings highlight
the feasibility and potential of Hebbian learning in modern deep learning.

However, certain limitations invite further investigation and delineate promising avenues for future
work. One notable observation from our experiments is that performance gains slightly diminish as the
number of convolutional layers increases. This suggests that noise accumulates as the layer increases
and that purely local unsupervised SPHeRe learning lacks sufficient contextual signals to learn to
eliminate noise. This challenge resonates with biological reality, where neural circuits employ a
sophisticated synergy between local synaptic plasticity and global neuromodulatory signals. SPHeRe
currently emphasizes the former. Therefore, a compelling next step involves exploring the integration
of multiscale regulatory or contextual signals, perhaps inspired by biological reward/punishment
pathways or attention mechanisms. We believe that pursuing such multiscale approaches will not
only advance the capabilities and scalability of Hebbian and other biologically inspired algorithms
within modern deep learning frameworks but also offer valuable computational perspectives that
could deepen our understanding of biological neural learning processes.
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A Proof of Lemma 4.2.1

Lemma 4.2.1. Let X ∈ RB×N be the input data matrix and let Y = XW ∈ RB×M be the output,
W ∈ RN×M be the weight matrix, and M < N . Consider the loss function L = ∥Y Y ⊤ −XX⊤∥2F .
Minimizing L with respect to W yields an optimal output Y ∗ given by Y ∗ = XVM , where VM

consists of the first M right singular vectors of X . This Y ∗ represents the projection of the rows of
X onto the M -dimensional principal subspace, and Y ∗Y ∗⊤ is the best rank-M approximation of
XX⊤ in the Frobenius norm.

The proof of the above theorem is similar to the proof of the Eckart-Young-Mirsky theorem, and its
proof is given below:

Proof. The objective is to minimize the loss function:L(W ) = ||Y Y ⊤ − XX⊤||2F . Substituting
Y = XW , we get:

L(W ) = ||(XW )(XW )⊤ −XX⊤||2F
= ||XWW⊤X⊤ −XX⊤||2F

Let P = WW⊤. The matrix P ∈ RN×N is semidefinite positive symmetric (SPD). The rank of P is
bounded by the dimensions of W : rank(P ) = rank(W ) ≤ min(N,M) = M , since M < N . The
optimization problem can be reformulated to find an SPD matrix P that minimizes

L(P ) = ||XPX⊤ −XX⊤||2F . (7)

First, we can perform a Singular Value Decomposition (SVD) of the input matrix X that let

X = UΣV ⊤, (8)

where:

• U ∈ RB×B is an orthogonal matrix (U⊤U = IB).

• V ∈ RN×N is an orthogonal matrix (V ⊤V = IN ). The columns v1, v2, . . . , vN of V are
the right singular vectors of X .

• Σ ∈ RB×N is a rectangular diagonal matrix containing the singular values σ1 ≥ σ2 ≥
· · · ≥ σr > 0 on its main diagonal, where r = rank(X).

We can express the terms in Eqn. 7 using the Eqn. 8:

• XX⊤ = (UΣV ⊤)(UΣV ⊤)⊤ = UΣV ⊤V Σ⊤U⊤ = U(ΣΣ⊤)U⊤. Let Λ = ΣΣ⊤ ∈
RB×B . Λ is a diagonal matrix with diagonal entries σ2

1 , . . . , σ
2
r , 0, . . . , 0.

• XPX⊤ = (UΣV ⊤)P (UΣV ⊤)⊤ = UΣV ⊤PV Σ⊤U⊤.

Then Eqn. 7 is change to:

L(P ) = ∥UΣV ⊤PV Σ⊤U⊤ − UΛU⊤∥2F

=
1

4
∥ΣV ⊤PV Σ⊤ − Λ∥2F ,

where the second equals sign is due to the unitary invariance property of the Frobenius norm (i.e.,
∥QAZ∥F = ∥A∥F for orthogonal matrices Q,Z). Let Q = V ⊤PV . Since V is orthogonal and P
is symmetric SPD with rank(P ) ≤ M , Q is also symmetric PSD with rank(Q) = rank(P ) ≤ M .
The optimization problem transforms into finding a symmetric PSD matrix Q ∈ RN×N with
rank(Q) ≤ M that minimizes:

L(Q) = ∥ΣQΣ⊤ − Λ∥2F . (9)
Let Σr = diag(σ1, . . . , σr). We can appropriately partition Σ and Q. Without loss of generality
regarding the dimensions B,N , the product takes the form:

ΣQΣ⊤ =

(
Σr 0
0 0

)
B×N

Q

(
Σr 0
0 0

)⊤

N×B

=

(
ΣrQ11Σr 0

0 0

)
B×B

, (10)
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where Q11 is the top-left r × r principal submatrix of Q. The matrix Λ = ΣΣ⊤ =

(
Σ2

r 0
0 0

)
B×B

.

The Eqn. 9 can be simplified to:

L(Q) = ∥ΣrQ11Σr − Σ2
r∥2F . (11)

Let A11 = ΣrQ11Σr. Since σi > 0 for i = 1, . . . , r, Σr is invertible. Thus, Q11 = Σ−1
r A11Σ

−1
r .

A11 must be symmetric SPD and rank(A11) = rank(Q11) ≤ M . The problem is equivalent to finding
the best rank-M symmetric SPD approximation A11 to the diagonal matrix Σ2

r = diag(σ2
1 , . . . , σ

2
r)

in the Frobenius norm. And the optimal rank-k approximation of a diagonal matrix (in Frobenius
norm) is obtained by keeping the k diagonal entries with the largest magnitudes and setting the
others to zero. Since σ2

1 ≥ · · · ≥ σ2
r > 0 and A11 must be SPD, the best rank-M symmetric SPD

approximation A∗
11 to Σ2

r is obtained by keeping the first M largest diagonal entries (assuming r ≥ M ,
otherwise keep all r): A∗

11 = diag(σ2
1 , . . . , σ

2
M , 0, . . . , 0)r×r. The corresponding optimal Q∗

11 is:
Q∗

11 = Σ−1
r A∗

11Σ
−1
r = diag(1, . . . , 1, 0, . . . , 0)r×r, where there are M ones. The optimal N ×N

matrix Q∗ can be constructed as: Q∗ =

(
Q∗

11 0
0 0

)
N×N

=

(
IM 0
0 0

)
N×N

. Q∗ is symmetric SPD

and rank(Q∗) = M . Then, we have

P ∗ = V

(
IM 0
0 0

)
N ×NV ⊤

= [VM , V N −M ]

(
IM 0
0 0

)(
V ⊤
M

V ⊤
N−M

)
= VMIMV ⊤

M = VMV ⊤
M

P ∗ is the projection matrix onto the subspace spanned by the first M right singular vectors of X . We
need to find W ∗ ∈ RN×M such that W ∗(W ∗)⊤ = P ∗ = VMV ⊤

M . A valid solution is W ∗ = VM .
(Other solutions W ∗ = VMO for any M ×M orthogonal matrix O exist, but they lead to the same
Y Y ⊤). As a result, the optimal output Y ∗:

Y ∗ = XW ∗ = XVM = UΣV ⊤VM = UΣB×M = UMΣM , (12)

So the optimal output Y ∗ = XVM calculates the coordinates of the rows of X projected onto this
principal subspace. Furthermore, the product Y ∗(Y ∗)⊤ is: Y ∗(Y ∗)⊤ = (UMΣM )(UMΣM )⊤ =∑M

i=1 σ
2
i uiu

⊤
i , which is the best rank-M approximation of XX⊤ = UΛU⊤ =

∑r
i=1 σ

2
i uiu

⊤
i in the

Frobenius norm. And the minimal loss Lmin =
∑N

i=M+1 σ
4
i .

B SPHeRe Loss in Nonliner Condition

In practice, instead of directly using the linear projection, we applied a nonlinear transformation to
X , we use f to represent the nonlinear transformation. So the loss function is change to:

L = ∥f(XW ; θf )f(XW ; θf )
⊤ −XX⊤∥2F , (13)

where the parameters θf of a universal approximator f (neural network). When Z = f(XW ; θf ) ∈
RB×M ′

(M ′ < N), through Lemma 4.2.1, we can obtain the optimal Z∗ = XVM ′ that minimizes
the loss L. Since f is a universal approximator, there theoretically exists a set of parameters θ∗f and
W ∗ such that f(XW ∗; θ∗f ) = XVM ′ . Therefore, during the training process, the output Z of the
auxiliary branch will gradually approach the dimensionality reduction projection of X: XVM ′ , and
the output Y of the main branch layer will gradually summarize and extract the features of the input
X through this training process.

To verify our viewpoint, we conducted the corresponding experiments. We trained two different
network branches: 1) linear branch, where f is a linear mapping with parameter W ; 2) nonlinear
branch, where f is a neural network with 3 layers. Both branches receive the exact same input data
X , and we train them through Eqn. 13. During the training process, we record the output features
at different training epochs and use the centered kernel alignment (CKA) similarity to quantify and
compare the similarity between the output features between two different branches (Fig. 3 A). From
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the CKA similarity curve in Fig. 3 B, it can be seen that, after only 20 training epochs, the CKA
similarity exceeded 0.90 and tended to stabilize at a high level as the training progressed for all
datasets. This indicates that regardless of whether an explicit nonlinear transformation f is used, the
SPHeRe loss drives the network to learn very similar feature representations.

Secondly, to further explore the structure of the feature space, we performed a single value decompo-
sition (SVD) on the feature output of the two branches. We focus on the 36 main components (that
is, right singular vectors) and calculate the similarity between the feature vectors obtained by linear
SPHeRe optimization (Linear f ) and those obtained by nonlinear SPHeRe optimization (Nonlinear
f ). We visualized these similarities as a 36× 36 similarity matrix (Fig. 3 C). The diagonal region of
the similarity matrix shows very high similarity, especially for the first few principal components
with lower indices (the first 20). This indicates that the most important principal directions (directions
explaining the most variance) in the feature space learned by the two optimization methods are
highly aligned and consistent. Principal components with higher indices (the last 10) do not strictly
follow the maximum similarity on the diagonal, but most singular vectors have relatively similar
corresponding vectors.
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Figure 3: (A) The experiment’s network architecture; (B) CKA similarity comparison of the linear
and nonlinear branches; (C) SVD component correlation between the linear and nonlinear branches.

C Comparison to related unsupervised methods

This section provides a comparative overview of SPHeRe and several related unsupervised learning
and matrix factorization methods. Table 5 summarizes the typical optimization objectives and
primary goals for SPHeRe along with typical unsupervised methods such as PCA, Kernel PCA,
MDS, SymNMF, and Laplacian eigenmaps. This comparison helps to situate SPHeRe within the
broader landscape of dimensionality reduction and structure preservation algorithms, highlighting the
similarities and distinctions in their underlying mathematical formulations and objectives.

D Supplementary Information on the Reconstruction Autoencoder

Fig. 4 shows the framework of the image reconstruction experiments. The encoder shares the same
structure as the unsupervised learning setting. The decoder has 3 upsampling Convolution layers
({512, 256, 3} channels) with kernel size 3, stride 2, padding 1 and out padding 1. To better visualize
the result of the reconstruction, the decoder is trained on the specific image for 100 iterations. We
use pixel-wise mean square error to quantify the difference between the reconstructed image and the
original image.

To guarantee generalization, we also tested on the whole CIFAR10 testing dataset, for which our
method also shows superiority. In this experiment, we trained the decoder on the training dataset for
10 epochs, then tested on the testing dataset. The result is shown in Table. 6.

And we provide more results of the image reconstruction tasks in Fig. 5 to support the experimental
results and the analysis in the main text.

Note that the reconstruction performance varies across different random initializations. To account
for this variability, we repeated the experiment with 10 different random seeds and report the mean
reconstruction loss along with the standard error of the mean (SEM) in Fig. 6.

14



Table 5: Comparison of SPHeRe with Related Unsupervised Learning / Matrix Factorization Methods
Method Typical Optimization Objective /

Equation
Primary Goal

SPHeRe minW,θ ∥KZ −KX∥2F
Z = ϕ(Y, θ) Y = f(X,W )
KX = XX⊤

KZ = ZZ⊤

Preserve input data structure (pair-
wise relationships defined by KX )
in the output representation Z. Find
optimal low-dimensional projection.

PCA maxW Tr(W⊤X⊤XW )
s.t. W⊤W = I .

Find orthogonal directions (princi-
pal components) capturing maxi-
mum variance. Dimensionality re-
duction preserving global covari-
ance structure.

Kernel PCA maxV Tr(V ⊤CϕV )
s.t. V ⊤V = Ip
Cϕ = 1

N Φ̃⊤Φ̃

ϕ̃(xi) = ϕ(xi)− 1
N

∑N
j=1 ϕ(xj)

Find principal components in a non-
linear feature space defined by the
kernel k. Preserve kernel-based
structure.

MDS minY
∑

i,j wij(dij(Y )− δij)
2

dij(Y ) is distance in embedding Y
δij is original distance.

Find a low-dimensional embedding
Y that preserves the given pairwise
distances or dissimilarities δij .

SymNMF minH≥0 ∥A−HH⊤∥2F
A is a given symmetric matrix
H must be non-negative

Find a non-negative low-rank matrix
H such that HH⊤ approximates A.
Often used for clustering.

Laplacian Eigenmaps minY Tr(Y ⊤LY )
s.t. Y ⊤DY = I .
(minY

∑
i,j wij∥yi − yj∥2)

L = D −W

Preserve local neighborhood struc-
ture in a low-dimensional embed-
ding. Dimensionality reduction for
manifold data.

Stage 1:
Pretrain with Hebbian Rule on CIFAR
Freeze Parameters 

Stage 2:
Train with BP

Encoder Decoder

Feature
Map

LossOriginal
Image

Noise

Original
Image

Reconstructed
 Image

Element-wise Addition
Forward
Detach Gradient
Gradient Backward

Figure 4: Auto-Encoder framework.

E t-SNE Visualization

To qualitatively assess the feature representations learned by the three convolutional layers trained by
our method, we visualized the output features for the CIFAR-10 dataset using t-SNE. Fig. 7 presents
the t-SNE embeddings for both the training and test set samples, comparing the feature space before
training (random weights) and after training. As expected, after training, distinct clusters begin to
emerge in the feature space for both training and test sets. This demonstrates that the proposed
unsupervised Hebbian learning process successfully organizes the feature representations based on the
underlying structure within the CIFAR-10 data, and these learned structures generalize well from the
training set to the unseen test set. Consistent with observations made for SoftHebb [9], our SPHeRe
approach shows a clear propensity to separate classes characterized by relatively well-defined shapes
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Table 6: Reconstruction result on CIFAR10
SoftHebb(100 epoch) SoftHebb BP SPHeRe

Loss 1.81 2.39 1.68 1.62
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Figure 5: Reconstruction experiment results. The loss values are scaled by a factor of 103.

and edges, such as airplane, automobile, ship and truck. However, it is more challenging to separate
classes representing animals that often feature fur, feathers, and more variable textures, such as birds,
cats, deer, and horses. These classes exhibit considerable overlap in the t-SNE embedding, suggesting
that the features captured by SPHeRe, while effective for edge-based discrimination, may be less
sensitive to finer textural details or complex shape variations.

Figure 7: The t-SNE results on CIFAR-10 dataset.
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Figure 6: Reconstruction loss across 10 random initializations (mean ± SEM). The y-axis is log-
scaled, and the loss values are scaled by a factor of 103.

F Experiments with Different Activation Functions

To validate the impact of the selection of activation functions on the performance of our model,
we conduct experiments considering several common activation functions: ReLU, Leaky-ReLU,
tanh, sigmoid, and binary step function. The results are summarized in Table. 7. The performance
differences achieved by different activation functions vary significantly, indicating that our approach
is still influenced by the choice of activation function. The training set accuracy of ReLU, Leaky-
ReLU, and tanh is above 95%, indicating that they are all good choices for the activation function.
Among them, Leaky-ReLU performs the best, possibly because it retains the most information before
activation while introducing nonlinearity.

Table 7: Comparison for different activation functions
ReLU Leaky-ReLU tanh sigmoid binary

Train accuracy 96.9 97.7 96.6 74.3 83.9
Test accuracy 79.9 81.2 78.5 72.7 71.2

G KNN Experiment

To better monitor the training process, we replace the final classifier with K-Nearest Neighbors
(KNN). As shown in Figure 8, the clustering process converges quickly during training. However,
after convergence, a slight decrease in accuracy is observed. We assume that this drop is mainly due
to overfitting on the training dataset.

H Spiking Neural Network Adaption

To further demonstrate the biologically plausible nature of SPHeRe, we demonstrate that our method
could work decently on Spiking Neural Networks. The overall network structure is the same with
CNN setting, activation function to Leaky-Integrate-and-Fire (LIF) dynamic (with 4 timesteps). We
use a surrogate gradient, as spikes are non-differentiable. The surrogate function we choose is the
Piecewise-Exponential surrogate function, which can be derived as: g′(x) = α

2 e
−α|x|.
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Figure 8: KNN validation accuracy

We verify our method and SoftHebb, comparing with random initial weight. The results in Table 8
show that our method can reach decent accuracy, while SoftHebb training has a negative effect on the
final result. This may be because softhebb directly implements the Hebbian rule operation on the
gradient, without considering the impact of different activation functions on the result distribution,
which is also mentioned in the Appendix of the Softhebb paper.

Table 8: Spiking Neural Network comparison
Approach Random weight SoftHebb SPHeRe

Accuracy 60.8 55.8 75.28

I Experiments compute resources

All the experiments are carried out on one Nvidia RTX 3090 Graphic Card with 24GB VRAM. The
detailed information is in below:

Table 9: Computational resources used for experiments. Training was conducted on an NVIDIA RTX
3090 GPU (24GB VRAM) with a batch size of 128 and dataloader workers set to 2.

Dataset Training Time GPU VRAM Usage CPU Workers Total Epochs
CIFAR-10 ∼30 min ∼2.5 GB 2 100
CIFAR-100 ∼30 min ∼2.5 GB 2 100
Tiny-ImageNet ∼3.5 hours ∼8.2 GB 2 100
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